COURSE OUTLINE OF RECORD

Number: BIOL G260

TITLE: Biostatistics

ORIGINATOR: Travis Vail

Formerly Known As:

CROSS LISTED COURSE:

SEMESTER UNITS: 3.0

HRS LEC: 36.0

HRS LAB: 54.0

HRS OTHER: 0.0

CONTACT HRS TOTAL: 90.0

STUDY NON-CONTACT HRS RECOMMENDED: 72.0

CATALOG DESCRIPTION:

Biostatistics introduces students to data analysis and experimental design. This course specifically focuses on the nature, generation, and testing of biological data. Analyses learned include, but are not limited to, one-sample t-test, two-sample t-test (both pooled and unpooled), variance ratio test, 1-way ANOVA, 2-way ANOVA with replication, block design ANOVA, Tukey's test of pairwise comparisons, chi-squared tests, and non-parametric tests. UC credit limitations: BIOL G260, MATH G103, MATH G160 and PSYC G140 combined – maximum credit, 1 course.

JUSTIFICATION FOR COURSE:

PREREQUISITES:

• BIOL G180: Cell and Molecular Biology with a minimum grade of c or better
 or
• BIOL G186: Diversity of Organisms with a minimum grade of c or better
 or
• BIOL G182: Zoology with a minimum grade of c or better
 or
• BIOL G210: General Microbiology with a minimum grade of c or better
 and
• MATH G120: Trigonometry
 or
• MATH G170: Precalculus with a minimum grade of c or better
 or
• MATH G180: Calculus 1 with a minimum grade of c or better

COREQUISITES:

ADVISORIES:

ASSIGNED DISCIPLINES:

Biological sciences

MATERIAL FEE: Yes [] No [X] Amount: $0.00

CREDIT STATUS: Noncredit [] Credit - Degree Applicable [X] Credit - Not Degree Applicable []

GRADING POLICY: Pass/No Pass [] Standard Letter [X] Not Graded [] Satisfactory Progress []

OPEN ENTRY/OPEN EXIT: Yes [] No [X]

TRANSFER STATUS: CSU Transferable[] UC/CSU Transferable[X] Not Transferable[]

BASIC SKILLS STATUS: Yes [] No [X]

LEVELS BELOW TRANSFER: Not Applicable

CALIFORNIA CLASSIFICATION CODES: Y - Not Applicable

NON CREDIT COURSE CATEGORY: Y - Not applicable, Credit Course

Page 1 of 5
BIOL G260-Biostatistics

OCCUPATIONAL (SAM) CODE:
REPEATABLE ACCORDING TO STATE GUIDELINES: No [X] Yes [] NUMBER REPEATS:
REQUIRED FOR DEGREE OR CERTIFICATE: No [X] Yes []

GE AND TRANSFER REQUIREMENTS MET:
IGETC Area 2: Mathematical Concepts and Quantitative Reasoning
 2A: Mathematics
CSU GE Area B: Scientific Inquiry and Quantitative Reasoning
 B4 - Mathematics/Quantitative Thinking
GWC AA - Area E Lifelong Understanding and Self-Development
 Area E Lifelong Understanding and Self-Development

COURSE LEVEL STUDENT LEARNING OUTCOME(S) Supported by this course:

1. Compose a scientific paper using the appropriate standards for scientific writing.
2. Design a scientifically sound experiment that generates analyzable data.
3. Analyze any data set encountered using the appropriate statistical analysis.
4. Interpret results of statistical analyses and discuss the implications of such results on the biological system examined.

COURSE OBJECTIVES:
1. Design a scientifically sound experiment that generates analyzable data.
2. Analyze any data set encountered using the appropriate statistical analysis.
3. Interpret results of statistical analyses and discuss the implications of such results on the biological system examined.
4. Compose a scientific paper using the appropriate standards for scientific writing.

COURSE CONTENT:

LECTURE CONTENT:
I. Definition of Biostatistics
II. Describing data types
 Commonly used terms
 Types of data
III. Experimental design
 Scientific method
 Control vs experimental groups
 Isolating variables
 Clinical vs. Observation experiments
 Designing with analysis in mind
IV. Describing data sets
 Frequency distributions
 Measures of center, variation, and relative standing
V. Probability
 Addition rule
 Multiplication rule

VI. Discrete probability distributions
 Binomial distribution and its parameters
 Poisson distribution and its parameters

V. Normal probability distributions
 Standard normal distribution
 Central Limit Theorem

VI. z-scores and t-scores

VII. One sample hypothesis testing
 Null and alternative hypotheses
 One-sample z tests
 One-sample t tests

VIII. Two-sample hypothesis testing
 Variance ratio hypothesis testing
 Two sample t’ hypothesis testing
 Two sample t hypothesis testing

IX. Correlation and regression

X. Chi-square hypothesis testing
 Test of goodness-of-fit
 Test of independence
 Test of homogeneity

XI. Analysis of Variance
 Why it works.
 Variance ratio test
 1-way ANOVA
 Tukey’s test
 2-way ANOVA with replication
 Tukey’s test
 2-way ANOVA without replication (block design)

XII. Non-parametric analyses
 Sign-ratio test
 Wilcoxon signed-rank tests
Kruskal-Wallis test
Rank Correlation

XIII. Deciding when test hypothesis test is appropriate

LABORATORY CONTENT:

I. Parameters and statistics
II. Use of the summation notation
III. Probability: Poisson and binomial distributions
IV. Probability: normal distribution
V. z-scores, t-scores, and standard normal distribution
VI. Experimental design
VII. Hypothesis testing
 Null and alternate hypotheses
 One-sample t and z tests
 Variance ratio test
 Two-sample t, t', and z tests
 One-way ANOVA
 Fmax test
 Tukey’s test
 Two-way ANOVA
 Randomized block design
 With replication
 Fmax test
 Tukey’s test
 Chi-square analyses
 Goodness-of-fit
 Homogeneity
 Independence
Non-parametrics

METHODS OF INSTRUCTION:
 A. Lecture:
 B. Lab:

INSTRUCTIONAL TECHNIQUES:
Lecture, hands-on lab work, assigned reading.
COURSE ASSIGNMENTS:

Reading Assignments
Textbook reading (as assigned on the course syllabus), reading of peer-review journal in preparation for experimental design.

Out-of-class Assignments
Student experiment project, problem sets completed at home

Writing Assignments
Scientific paper covering student experiments

METHODS OF STUDENT EVALUATION:

Written Assignments
Essay Examinations
Objective Examinations
Report
Projects (ind/group)
Problem Solving Exercises
Oral Presentations

Demonstration of Critical Thinking:
Application of results of statistical analyses

Required Writing, Problem Solving, Skills Demonstration:
Scientific written and oral reports regarding student-generated experiment, data, and results.

TEXTS, READINGS, AND RESOURCES:

TextBooks:

LIBRARY:

Adequate library resources include: Print Materials
Non-Print Materials
Online Materials
Services

Comments:
An expansion of subscribed scientific journals would help students in preliminary research prior to design of their experiment.

Attachments:
Attached Files