Number: GEOG G180 TITLE: Introduction To Geography: Physical Geography

ORIGINATOR: Megan Hoberg EFF TERM: Spring 2016
FORMERLY KNOWN AS: DATE OF
OUTLINE/REVIEW: 09-23-2015
CROSS LISTED COURSE: TOP NO: 2206.00
CID: GEOG 110

SEMESTER UNITS: 3.0
HRS LEC: 54.0 HRS LAB: 0.0 HRS OTHER: 0.0
CONTACT HRS TOTAL: 54.0
STUDY NON-CONTACT HRS RECOMMENDED: 108.0

CATALOG DESCRIPTION:
Recommended for transfer students majoring in anthropology, economics, geography, history, sociology and the natural sciences. A study of the basic physical elements of the geographical environment, with particular attention to the earth as a planet, its structural features, landforms, meteorological and climatological phenomena, vegetation, soils and environmental regions. C-ID GEOG 110

JUSTIFICATION FOR COURSE:

PREREQUISITES:
COREQUISITES:
ADVISORIES:
• MATH G010: Elementary Algebra

ASSIGNED DISCIPLINES:
Geography

MATERIAL FEE: Yes [] No [X] Amount: $0.00

CREDIT STATUS: Noncredit [] Credit - Degree Applicable [X] Credit - Not Degree Applicable []

GRADING POLICY: Pass/No Pass [X] Standard Letter [X] Not Graded [] Satisfactory Progress []

OPEN ENTRY/OPEN EXIT: Yes [] No [X]

TRANSFER STATUS: CSU Transferable[X] UC/CSU Transferable[X] Not Transferable[]

BASIC SKILLS STATUS: Yes [] No [X] LEVELS BELOW TRANSFER: Not Applicable

CALIFORNIA CLASSIFICATION CODES: Y - Not Applicable

NON CREDIT COURSE CATEGORY: Y - Not applicable, Credit Course

OCCUPATIONAL (SAM) CODE: E

REPEATABLE ACCORDING TO STATE GUIDELINES: No [X] Yes [] NUMBER REPEATS:

REQUIRED FOR DEGREE OR CERTIFICATE: No [] Yes [X]

Anthropology(Associate in Arts)
Associate in Arts: Liberal Arts: Emphasis in Social Sciences(Associate in Arts)
Geography(Associate in Arts for Transfer)
Liberal Arts: Emphasis in Science(Associate in Arts)

GE AND TRANSFER REQUIREMENTS MET:
IGETC Area 5: Physical and Biological Sciences
 5A: Physical Science
 x
 x
CSU GE Area B: Scientific Inquiry and Quantitative Reasoning
 B1 - Physical Science

COURSE LEVEL STUDENT LEARNING OUTCOME(S) Supported by this course:

1. recognize, define, and/or locate geographic phenomena.
2. classify and map bio-climatic data.
3. synthesize meteorological phenomena to form climatic types.
4. synthesize global environmental regions from climatic, geomorphic, edaphic, botanic data.
5. analyze physical landforms and landscapes in terms of causal factors, structure, process and stage
6. predict the results of both real and hypothetical changes in landscape processes.

COURSE OBJECTIVES:
1. understand the spatial patterns of physical elements on earth, such as air, water, sunlight, rocks, minerals, and vegetation
2. understand the interrelated processes of these physical elements on earth

COURSE CONTENT:

LECTURE CONTENT:

A. Earth as a system with four major subsystems
 1. Atmosphere
 2. Biosphere
 3. Hydrosphere
 4. Lithosphere

B. Planet earth - Earth-Sun Relationships

C. Elements of weather and climate:
 1. Temperature
 2. Pressure and wind
 3. Moisture
 4. Storm systems

D. Controls of weather and climate
 1. Latitude and Earth-Sun Relationships
 2. Continentality
 3. Ocean currents
 4. Altitude
 5. Landforms
 6. Human Impact

E. Climatology and bio-climatic correlation

F. Global patterns of soil and vegetation

G. Earth materials, structure and processes
 1. Tectonic processes
 a. Plate tectonics
 b. Folding, faulting, Volcanism
 2. Gradational processes
 a. Weathering and mass wasting
 b. Rivers, glaciers, Wind, and Waves

H. Regional synthesis of the four subsystems
METHODS OF INSTRUCTION:

A. Lecture:
B. Online:
C. Independent Study:

INSTRUCTIONAL TECHNIQUES:

COURSE ASSIGNMENTS:
Out-of-class Assignments
None

Writing Assignments

Research papers, class participation and examinations will require students to apply the materials of the this course to both hypothetical situations and global problems.

Reading Assignments

There will be daily reading assignments in the required textbook. Completion of these assignments will be absolutely necessary for success in the course.

METHODS OF STUDENT EVALUATION:
Midterm Exam
Final Exam
Written Assignments
Essay Examinations
Objective Examinations
Problem Solving Exercises

Demonstration of Critical Thinking:

1. ANALYSIS of processes and systems such as glaciation, climatic change, coastal geomorphology, etc. 2. SYNTHESIS of global environmental regions, such as tundra, savanna, and rainforest, from data about soil, vegetation and climate 3. PREDICTION of end results of current processes such as global climatic warming.

Required Writing, Problem Solving, Skills Demonstration:

Research papers, class participation and examinations will require students to apply the materials of the this course to both hypothetical situations and global problems.

TEXTS, READINGS, AND RESOURCES:

TextBooks:

Software:

LIBRARY:

Adequate library resources include: Non-Print Materials

Comments:

Attachments:

Attached Files