This course is designed as the first in a three-course sequence for students desiring to major in biology. The topics to be covered in this course are among those which serve to unify the science of biology. Included in these concepts are: prokaryotic and eukaryotic cell structure, function and homeostasis, cell reproduction and metabolism, cell communication, classical and molecular genetics, molecular biology, biotechnology, and evolution.

JUSTIFICATION FOR COURSE:

PREREQUISITES:
- MATH G030: Intermediate Algebra with a minimum grade of C or better
- MATH G040: Accelerated Elementary and Intermediate Algebra with a minimum grade of C or better
- GWC Math Placement Level of 50 or higher.
- OCC Math Placement Level of 50 or higher.
- MATH A030: Intermediate Algebra with a minimum grade of C or better
- CCC Math Placement Level of 60 or higher.
- MATH C030: Intermediate Algebra with a minimum grade of C or better
- CHEM G180: General Chemistry A with a minimum grade of C or better
- CHEM G185: General Chemistry B with a minimum grade of C or better
- CHEM G220: Organic Chemistry A with a minimum grade of C or better
- CHEM G225: Organic Chemistry B with a minimum grade of C or better
- CHEM C180: General Chemistry A with a minimum grade of C or better
- CHEM C185: General Chemistry B with a minimum grade of C or better
- CHEM C220: Organic Chemistry A with a minimum grade of C or better
• CHEM C225: Organic Chemistry B with a minimum grade of C or better
 or
• CHEM A180: General Chemistry A with a minimum grade of C or better
 or
• CHEM A185: General Chemistry B with a minimum grade of C or better
 or
• CHEM A220: Organic Chemistry A with a minimum grade of C or better
 or
• CHEM A225: Organic Chemistry B with a minimum grade of C or better

COREQUISITES:

ADVISORIES:
• ENGL G099: Preparation for College Writing and Reading
 or
• ENGL G090: Accelerated Preparation for College Writing and Reading

ASSIGNED DISCIPLINES:
 Biological sciences

MATERIAL FEE: Yes [X] No [] Amount: $9.00

CREDIT STATUS: Noncredit [] Credit - Degree Applicable [X] Credit - Not Degree Applicable []

GRADING POLICY: Pass/No Pass [] Standard Letter [X] Not Graded [] Satisfactory Progress []

OPEN ENTRY/OPEN EXIT: Yes [] No [X]

TRANSFER STATUS: CSU Transferable[] UC/CSU Transferable[X] Not Transferable[]

BASIC SKILLS STATUS: Yes [] No [X] LEVELS BELOW TRANSFER: Not Applicable

CALIFORNIA CLASSIFICATION CODES: Y - Not Applicable

NON CREDIT COURSE CATEGORY: Y - Not applicable, Credit Course

OCCUPATIONAL (SAM) CODE: E

REPEATABLE ACCORDING TO STATE GUIDELINES: No [X] Yes [] NUMBER REPEATS:

REQUIRED FOR DEGREE OR CERTIFICATE: No [] Yes [X]
General Biology(Associate in Arts)
General Biology(Associate in Arts)
Liberal Arts: Emphasis in Science(Associate in Arts)

GE AND TRANSFER REQUIREMENTS MET:
IGETC Area 5: Physical and Biological Sciences
 5B: Biological Science
 5C: Laboratory Activity
CSU GE Area B: Scientific Inquiry and Quantitative Reasoning
 B2 - Life Science
 B3 - Laboratory Sciences
Degree Applicable
 AA Degree Applicable

COURSE LEVEL STUDENT LEARNING OUTCOME(S) Supported by this course:

1. List and describe the different steps of eukaryotic cell division.
2. Evaluate enzymatic data and associated graphs in a laboratory setting.
3. Correctly identify various organelles of a eukaryotic cell and list their functions.
4. Prepare a diluted chemical solution by calculating and measuring the required volumes of stock solution and diluents.
5. Correctly calculate and draw a map of the restriction enzyme sites of a plasmid DNA molecule using RFLP analysis.

6. Assess current biological issues relevant to molecular biology such as stem cell research, cancer, gene therapy, epigenetic processes and genetic engineering.

COURSE OBJECTIVES:

1. Demonstrate, through essay or objective examination, an understanding of those principles which permeate and consequently serve to unify the science of Biology.
2. Demonstrate an understanding of evolutionary processes and discuss these processes as they relate to the origin of prokaryotic and eukaryotic cells.
3. Identify, describe and discuss prokaryotic and eukaryotic cell structures and important biological molecules.
4. List and describe critical prokaryotic and eukaryotic cell processes, including metabolism, cell communication, DNA replication, cell reproduction and gene regulation, and describe the main differences between the two cell types regarding these processes.
5. Discuss, through group debate and objective examination, the technical and ethical issues facing modern biology, biotechnology, and genetic engineering.
6. Use attained knowledge of classical, population and molecular genetics to solve a variety of genetics problems.
7. Demonstrate an understanding of recent advances and future goals in the areas of biotechnology and genetic engineering.
8. Research the biological literature and utilize that literature to write a scientific report.
9. Cite experimental evidence to support or refute a proposed hypothesis.

COURSE CONTENT:

LECTURE CONTENT:

I. Introduction
 A. The Scientific Method of Inquiry
 B. Properties of Life
 C. Origin of Life
 D. Prokaryotic and Eukaryotic Cells

II. Introduction to the Chemistry of Biology
 A. Importance and Properties of Water
 B. Importance and Properties of Carbon
 C. Biological Molecules and Macromolecules

III. Cell Structure and Function
 A. Microscopy and Histology
 B. Prokaryotic Cell Structure and Function
 C. Eukaryote Cell Structure and Function
 D. The Secretory Pathway
 E. Evolution of Eukaryotic Organelles

IV. Membrane Structure and Function
 A. Membrane Proteins
 B. Transport Across Membranes
 C. Membrane Receptors

V. Cell Communication
 A. Signal Transduction

VI. Metabolism
 A. Energy, Thermodynamics and Enzymes
 B. Cellular Respiration
 C. Photosynthesis
VII. Cell Reproduction
 A. Mitosis and Cell Cycle Control
 B. Meiosis and Genetic Diversity

VIII. Genetics
 A. Classical/Mendelian Genetics
 B. Chromosomal Basis for Heredity
 C. Molecular Genetics
 D. Population Genetics

IX. From Gene to Protein
 A. DNA Structure and Function
 B. Transcription and Control of Gene Expression
 C. Translation
 D. Epigenetics

X. Biotechnology
 A. Genetic Engineering
 B. Stem Cell Research and Ethics

XI. Evolution of Genomes

LABORATORY CONTENT:
 A. Introduction to laboratory technique and equipment, laboratory safety, tools of measurement, and the Scientific Method.
 B. Introduction to the spectrophotometer and graphing.
 C. Studies of enzyme reactions and variables that affect enzymes.
 D. Introduction to microscopy.
 E. Microscopic studies of the organelles of eukaryotic cells and tonicity.
 F. Photosynthesis, cellular respiration and fermentation.
 G. Determination of the molecular weight of a protein using polyacrylamide gel electrophoresis.
 H. Introduction to sterile technique.
 I. Preparing dilutions of bacterial cultures and isolation of single colonies.
 J. Using Restriction Fragment Length Polymorphisms to generate a restriction map of circular plasmid.
 K. Preparation of competent bacterial cells and transformation of cells with a recombinant plasmid.
 L. Isolation of recombinant plasmids from transformed bacteria.
 M. Amplification of mitochondrial DNA by Polymerase Chain Reaction.
 N. Hardy-Weinberg studies and evolution.

METHODS OF INSTRUCTION:
 A. Lecture:
 B. Lab:
 C. Independent Study:

INSTRUCTIONAL TECHNIQUES:

COURSE ASSIGNMENTS:
Reading Assignments
 A. Textbook chapters (weekly)
 B. Scientific Journal articles

Out-of-class Assignments
 A. Project report
 B. Laboratory reports
 C. Problem sets

Writing Assignments
 A. Laboratory reports
B. Written project report

METHODS OF STUDENT EVALUATION:
Midterm Exam
Final Exam
Short Quizzes
Written Assignments
Essay Examinations
Objective Examinations
Report
Projects (ind/group)
Problem Solving Exercises
Oral Presentations
Skills Demonstration

Demonstration of Critical Thinking:
During the course, students will be required to analyze laboratory data, evaluate hypotheses, and deduce valid conclusions from experimental evidence. They will also be required to discuss and critique current biological research.

Required Writing, Problem Solving, Skills Demonstration:
Students will practice writing as they complete lab reports, take essay exams, submit a project report, and demonstrate laboratory proficiency with a practical exam.

TEXTS, READINGS, AND RESOURCES:
TextBooks:

LIBRARY:
Adequate library resources include: Print Materials
Non-Print Materials
Online Materials
Services

Comments:

Attachments:
Attached Files